High Throughput Approach to Antibody Formulation using *i*Formulate® Plates

Rajiv Nayar and Mitra Mosharraf HTD Biosystems Inc. 1061 Serpentine Lane, Suite E, Pleasanton, CA 94566 BIOSYSTEMS INC. High Throughput Developme

OBJECTIVE

The *i*Formulate[®] plate provides a pre-designed multivariate formulation kit that evaluates 4 critical formulation variables; pH, ionic strength, stabilizer concentration, and buffer concentration. It consists of 20 unique formulations and a few replicates with a response-surface quadratic design. In this study, the use of this kit for formulation of an antibody is evaluated.

METHODS

The /Formulate [®] design used consisted of the following variables:

• pH (5.0 – 8.0),

- NaCl concentration (0-200 mM),
- Buffer concentration (10-50 mM)
- Trehalose concentration (0-10 wt%).

The procedure used is described below:

RESULTS

Figure 1. Aggregation and conformational changes correlate.

Figure 2. Effect of NaCl on aggregation showing interaction between pH and NaCl

inormational onlangeo		
_		
	Pareto Effects for Liquid_A340	
Term		4 Tahukozo 13 Buhdr02 12 Na072 9 Na01Tahaloso 1 pH 8 Na01Buhdr 2 Na0 8 Na01Buhdr 2 Na0 5 pHNa0 5 pHNa0 10 Buhdr0Tahason 10 pH2 0 Buhdr0Tahason 10 pH2 10 Buhdr0 7 pHTahaloso 8 pHRufec 6 pHBuflec 8 pHBuflec 8 pH
	Effect	

Figure 3. Pareto analysis suggests that trehalose concentration is positively correlated to aggregation of this antibody.

CONCLUSION

- 1. The results showed that an optimal formulation requires low pH, no trehalose and isotonicity can be adjusted with NaCl
- 2. *I*Formulate[®], a high throughput approach for formulation development that provides maximum number of results with a minimum amount of experimental trials.
- 3. It saves time, cost and resources for formulation development.
- *4. i*Formulate[®] provides a rationale and justification for the formulation using Quality by Design principles and addresses the newly published FDA guidelines for Process Validation.

www.htdcorp.com